Lösung Aufgabe 4-4, 2003

a) Am Tripelpunkt ist
\[p_l = p_s; \quad -1425,7 \, K \cdot T^{-1} + 10,4435 = -1871,2 \, K \cdot T^{-1} + 12.7165 \]
\[T = 196 \, K \quad p = 1477 \, Pa \]

b) \[p_l = 1,013 \cdot 10^5 \, Pa \]
\[\lg (1,013 \cdot 10^5) = -1425,7 \, K \cdot T^{-1} + 10,4435 \]
\[T = 262 \, K \]

c) In die entsprechenden Gleichungen eingesetzt ergibt sich
(i) \[p(SO_2(s)) = 21,4 \cdot 10^5 \, Pa \]
(ii) \[p(SO_2(l)) = 3,78 \cdot 10^5 \, Pa \]

d) [Diagramm]

e) Gasförmig (Punkt 293 K/1,000 \cdot 10^5 \, Pa eingezeichnet)

f) 50 °C = 243 K > T_{Tripelpunkt}. Hier wird beim Verdampfen immer erst der Bereich erreicht, in dem die flüssige Phase stabil ist, sodass Sublimieren hier nicht möglich ist.
Lösung Aufgabe 2-3, 2006

a) Der Gesamtdruck hängt von der Lage des Gleichgewichts ab. Zuerst muss also die Gleichgewichtskonstante berechnet werden.

\[2 \text{ NO}_2 \rightleftharpoons \text{ N}_2\text{O}_4 \]

\[\Delta H = (9160 - 2 \cdot 33200) \text{ J} \cdot \text{mol}^{-1} = -57240 \text{ J} \cdot \text{mol}^{-1} \]
\[\Delta S = (304,3 - 2 \cdot 240,1) \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = -175,9 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \]
\[\Delta G = (-57240 + 300 \cdot 175,9) \text{ J} \cdot \text{mol}^{-1} = -4470 \text{ K} \cdot \text{J} \cdot \text{mol}^{-1} \]

\[\ln K = -\frac{\Delta G}{RT} \]
\[\ln K = 4470/8,314 \cdot 300 \]

\[K = 6,00 \]

Das auf diese Weise berechnete \(K \) ist dimensionslos und steht für den Term:

\[K = \frac{p(\text{N}_2\text{O}_4)}{p^*(\text{NO}_2)} \frac{p^*(\text{NO}_2)}{p^*(\text{N}_2\text{O}_4)} \]

\[\Rightarrow K_p = \frac{K}{p_{\text{standard}}} \quad K_p = 6,00 \cdot 10^{-5} \cdot \text{Pa}^{-1} \]

(Vielen außerhalb der Physikalisch-chemischen Institute ist nicht bekannt, dass der Standarddruck seit langem von der IUPAC mit 1,0000 \cdot 10^5 \text{ Pa} festgelegt ist.) Für die Berechnung des Gleichgewichts kann man von einem beliebigen Anfangszustand der Mischung von \(\text{NO}_2 \) und \(\text{N}_2\text{O}_4 \) ausgehen, z.B. kann man sich vorstellen, zuerst liege nur \(\text{NO}_2 \) vor:

\[n(\text{NO}_2) = \frac{64,4 \text{ g}}{46,0 \text{ g} \cdot \text{mol}^{-1}} = 1,40 \text{ mol} \]

\[2 \text{ NO}_2 \rightleftharpoons \text{ N}_2\text{O}_4 \]

Stoffmengen im Gleichgewicht:

\[(1,40 - 2x) \text{ mol} \quad x \text{ mol} \]

Gesamtstoffmenge im Gleichgewicht:

\[n_{\text{gesamt}} = (1,40 - x)\text{mol} \]

Partialdrücke im Gleichgewicht:

\[p(\text{NO}_2) = \frac{n(\text{NO}_2)}{n_{\text{gesamt}}} \cdot p_{\text{gesamt}} \]

\[p(\text{N}_2\text{O}_4) = \frac{n(\text{N}_2\text{O}_4)}{n_{\text{gesamt}}} \cdot p_{\text{gesamt}} \]

\[K_p = \frac{p(\text{N}_2\text{O}_4)}{p^2(\text{NO}_2)} \quad \text{und} \quad p_{\text{gesamt}} = \frac{n_{\text{gesamt}} \cdot R \cdot T}{V} \]

\[6,00 \cdot 10^{-5} = \frac{x(1,40-x)}{(1,40-2x)^2} \cdot \frac{15 \cdot 10^{-3}}{(1,40-x) \cdot 8,314 \cdot 300} \]
\[x^2 + \frac{1}{4} \cdot \left(-5,6 - \frac{15}{18,8314} \right) x + \frac{1}{4} \cdot 1,4^2 = 0 \]
\[x_1 = 0,846 \quad \text{(nicht relevant wegen } 1,40 - 2x < 0) \quad x_2 = 0,579 \]
\[n(N_2O_4) = 0,579 \text{ mol} \quad n(NO_2) = 0,241 \text{ mol} \]
\[n_{\text{gesamt}} = 0,821 \text{ mol} \]
\[p_{\text{gesamt}} = \frac{0,821 \cdot 8,314 \cdot 300}{15 \cdot 10^{-3}} \text{ Pa} = 136,516 \text{ Pa}, \]
\[p_{\text{gesamt}} = 1,37 \text{ bar} \]

b) Der Druck verringert sich und damit ändert sich auch die Gleichgewichtslage. Folglich nimmt der Partialdruck nicht in derselben Weise ab wie der Gesamtdruck, die Änderung der Gleichgewichtszusammensetzung muss ebenfalls berücksichtigt werden. Die Abnahme des Gesamtdrucks erfolgt nach derselben Gesetzmäßigkeit wie beim radioaktiven Zerfall:
\[p_{\text{gesamt}} = p_{0,\text{gesamt}} \cdot e^{-kt} \quad \text{mit } k = 0,001 \text{ s}^{-1} \]

Bestimmung der Gleichgewichtskonstanten:
\[\Delta H = \Delta H_{\text{Produkte}} - \Delta H_{\text{Edukte}} + (C_{p,\text{Produkte}} - C_{p,\text{Edukte}}) \cdot \Delta T \]
\[\Delta H = -57240 \text{ J} \cdot \text{mol}^{-1} + (77,8 - 2 \cdot 37,2) \cdot 52 \text{ J} \cdot \text{mol}^{-1} = -57063 \text{ J} \cdot \text{mol}^{-1} \]
\[\Delta S = \Delta S_{\text{Produkte}} - \Delta S_{\text{Edukte}} + (C_{p,\text{Produkte}} - C_{p,\text{Edukte}}) \cdot \ln \left(\frac{p_2}{p_1} \right) \]
\[\Delta S = -175,9 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} + (77,8 - 2 \cdot 37,2) \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \cdot \ln \left(\frac{350}{298} \right) \]
\[\Delta G = -57063 \text{ J} \cdot \text{mol}^{-1} - 350 \text{ K} \cdot (-175,35 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}) = 4310 \text{ J} \cdot \text{mol}^{-1} \]
\[\ln K = \frac{-4310}{8,314 \cdot 350} \]
\[K = 0,227 \]
\[K_p = 2,27 \cdot 10^{-6} \text{ Pa}^{-1} \]

mit \[p_{\text{gesamt}} = p_{0,\text{gesamt}} \cdot e^{-0,001 \text{ s}^{-1} \cdot t} \]
\[p(N_2O_4) + p(NO_2) = p_{0,\text{gesamt}} \cdot e^{-0,001 \text{ s}^{-1} \cdot t} \]
\[K_p = \frac{3,00 \cdot 10^5 \text{ Pa} \cdot e^{-0,001 \text{ s}^{-1} \cdot t} \cdot p(NO_2)}{p^2(NO_2)} \]
\[p^2(NO_2) + p(NO_2) \cdot K_p^{-1} - (3,00 \cdot 10^5 \text{ Pa} \cdot e^{-0,001 \text{ s}^{-1} \cdot t}) \cdot K_p^{-1} = 0 \]
\[p(NO_2) = \left[-220 \cdot 10^3 + \sqrt{4,85 \cdot 10^{10} + 1,32 \cdot 10^{11} \cdot e^{0,001 \text{ s}^{-1} \cdot t}} \right] \text{ Pa} \quad (0) \]
c) Molenbruch \[x = \frac{p(\text{NO}_2)}{p_{\text{gesamt}}} \]

(1) \[x = \frac{-1}{2K_p} + \frac{1}{4K_p^2} \cdot \frac{3 \cdot 10^5 \text{Pa} \cdot e^{-0.001 \text{ s}^{-1} \cdot t}}{K_p} \]

oder hier \(K_p = 2.27 \cdot 10^{-6} \text{ Pa}^{-1} \) eingesetzt und auf drei signifikante Stellen gerundet:

(2) \[x = \frac{-0.734 + \sqrt{0.539 + 1.47 \cdot e^{-0.001 \text{ s}^{-1} \cdot t}}}{e^{-0.001 \text{ s}^{-1} \cdot t}} \]

(Die Funktion (1) reagiert sehr sensibel auf Rundungen. Die Graphen von (1) und (2) unterscheiden sich im verlangten Zeitbereich kaum, aber schon bei \(t > 4000 \text{ s} \) steigt der Graph von (2) über den Wert 1, was für den Molenbruch nicht zutreffen kann. Benutzt man zur Aufstellung der Molenbruchfunktion die Gleichung (0) aus b), ergibt sich eine ähnliche Gleichung wie (2):

(3) \[x = \frac{-0.733 + \sqrt{0.539 + 1.47 \cdot e^{-0.001 \text{ s}^{-1} \cdot t}}}{e^{-0.001 \text{ s}^{-1} \cdot t}} \]

Hier kann man schon am Kurvenverlauf sehen, dass etwas nicht stimmen kann.)
d) Durch die Abnahme des Gesamtdruckes sinkt natürlich auch der Partialdruck von NO$_2$ entsprechend der Kurve in b). Da aber der Gesamtdruck sinkt, verschiebt sich das Gleichgewicht hin zu der Seite mit größerer Teilchenzahl (Prinzip von Le Chatelier), die NO$_2$-Bildung wird bevorzugt. Dadurch steigt der Molenbruch von NO$_2$ entsprechend der Kurve in c).

Lösung Aufgabe 4-4, 2007

a)
\[K_p = \frac{p^2(NH_3)}{p^3(H_2) \cdot p(N_2)} = \frac{0,499^2}{0,376^3 \cdot 0,125} \]
\[K = K_p \cdot \frac{\Delta n}{p_{\text{Standard}}} \]
\[\Delta n = -2 \]
\[K = 37,47 \text{ bar}^{-2} \cdot 1,013^2 \text{ bar}^2 = 38,45 \]
\[\Delta G^\circ = -RT \cdot \ln K \]
\[\Delta G^\circ = -8,314 \cdot 400 \cdot \ln 38,45 \text{ J} \cdot \text{mol}^{-1} \]
\[\Delta G^\circ = -12136 \text{ J} \cdot \text{mol}^{-1} = -12,140 \text{ kJ} \cdot \text{mol}^{-1} \]

b)
\[n(N_2) = \frac{n(H_2)}{p(H_2)} \cdot p(N_2) \]
\[n(N_2) = \frac{500 \text{ mmol}}{0,376} \cdot 0,125 = 166 \text{ mol} \]
\[n(NH_3) = \frac{n(H_2)}{p(H_2)} \cdot p(NH_3) \]
\[n(NH_3) = \frac{500 \text{ mmol}}{0,376} \cdot 0,499 = 664 \text{ mol} \]
\[p_{\text{gesamt}} = p(H_2) + p(N_2) + p(NH_3) \]
\[p_{\text{gesamt}} = 1 \text{ bar} \]
\[n_{\text{gesamt}} = 1330 \text{ mol} \]

c) Durch die Zugabe von Wasserstoff ändern sich alle Partialdrücke,
\[n_{\text{gesamt, neu}} = 1340 \text{ mol} \]
\[p_{\text{neu}}(H_2) = \frac{510}{1340} \cdot 1 \text{ bar} = 0,381 \text{ bar} \]
\[p_{\text{neu}}(N_2) = \frac{166}{1340} \cdot 1 \text{ bar} = 0,124 \text{ bar} \]
\[p_{\text{neu}}(\text{NH}_3) = \frac{664}{1340} \cdot 1 \text{ bar} = 0,496 \text{ bar} \]
\[\Delta G = \left[-12140 + 8,314 \cdot 400 \cdot \ln \left(\frac{0,496^2}{0,381^2 \cdot 0,124} \cdot 1,0132 \right) \right] \text{ J mol}^{-1} \approx -149 \text{ J mol}^{-1} \]

Die Reaktion verläuft in Richtung der Produkte, der Bildung von \(\text{NH}_3 \).

d) Man könnte argumentieren, dass nach dem Prinzip von Le Chatelier bei Zugabe eines Eduktes (\(\text{N}_2 \)) das System in Richtung des Produkts (\(\text{NH}_3 \)), also nach rechts, ausweicht. Das Prinzip von Le Chatelier erlaubt bei dieser Störung des Gleichgewichts jedoch keine intuitive Aussage über die Reaktion des Systems, da sich alle drei beteiligten Partialdrucke in unterschiedlicher Weise verändern.

Rechnung:

\[n_{\text{Gl}}(\text{H}_2) + n_{\text{Gl}}(\text{N}_2) + n_{\text{Gl}}(\text{NH}_3) = 775 \text{ mol} \]
\[n_{\text{neu}}(\text{H}_2) + n_{\text{neu}}(\text{N}_2) + n_{\text{neu}}(\text{NH}_3) = 785 \text{ mol} \]
\[p_{\text{neu}}(\text{H}_2) = \frac{100}{785} \cdot 1 \text{ bar} \quad p_{\text{neu}}(\text{N}_2) = \frac{510}{785} \cdot 1 \text{ bar} \quad p_{\text{neu}}(\text{NH}_3) = \frac{175}{785} \cdot 1 \text{ bar} \]
\[\frac{175^2 \cdot 785^2}{100^3 \cdot 510} \text{ bar}^{-2} = 37,00 \text{ bar}^2 > K_p = 36,79 \text{ bar}^2 \]

Damit ist der Zähler zu groß, das System reagiert in Richtung der Edukte.

Zum gleichen Ergebnis führt die Berechnung von \(\Delta G^\circ \):

\[K = K_p \cdot 1,013 \text{ bar}^2 \quad \Delta G^\circ = -8,314 \cdot 410 \cdot \ln(36,79 \cdot 1,0132) \text{ J mol}^{-1} \]
\[\Delta G = 8,314 \cdot 410 \cdot \left[-\ln(36,79 \cdot 1,0132^2) + \ln\left(\frac{175^2 \cdot 785^2}{100^3 \cdot 510} \right) \right] \text{ J mol}^{-1} \]
\[= +19,74 \text{ J mol}^{-1} > 0 \]

\[\Rightarrow \text{das System reagiert nach links.} \]

Lösung Aufgabe 2-2, 2019

a)
\[n = \frac{p V C}{RT_1} = \frac{1,0 \cdot 10^5 \text{ Pa} \cdot 500 \text{ mL}}{8,314 \frac{1}{\text{Kmol}} (400 \text{ K} + 273 \text{ K})} = 0,0894 \frac{10^5 \text{ N m}^2 \cdot 10^{-6} \text{ m}^3}{\text{K mol} \cdot \text{K}} \]
\[= 0,0894 \cdot 10^{-1} \text{ mol} = 8,94 \text{ mmol} \]

b)
\[p_D = \frac{n R T_1}{V_p} = \frac{8,94 \text{ mmol} \cdot 8,314}{27,8 \text{ mL}} \frac{1}{\text{Kmol} \cdot (400 \text{ K} + 273 \text{ K})} = 1799 \cdot \frac{10^{-3} \text{ mol} \cdot \text{N m}}{\text{K mol} \cdot \text{K} \cdot 10^{-6} \text{ m}^3} \]
\[V_A = \frac{nRT_1}{p_A} = \frac{8.94 \text{ mmol} \cdot 8314 \text{ J K}^{-1} \text{ mol}^{-1}}{7.5 \cdot 10^6 \text{ Pa}} \times \frac{(2000 \text{ K} + 273 \text{ K})}{10^{-3} \text{ mol} \cdot \text{N m}^{-2} \cdot \text{K}} = 22526 \cdot \frac{10^6 \text{ N m}^2}{10^6 \text{ m}^2} \]
\[= 22.5 \cdot 10^{-6} \text{ m}^3 = 22.5 \text{ mL} \]

d)

i) Isotherme Expansion = Ausdehnung bei konstanter Temperatur. (Es erfolgt ein Wärmeaustausch mit der Umgebung.)

ii) Adiabatische Kompression = Verdichtung ohne Wärmeaustausch mit der Umgebung.

e) \[w_{\text{Prozess}} = w_{AB} + w_{CD} = -nRT_2 \ln \frac{V_B}{V_A} - nRT_1 \ln \frac{V_D}{V_C} \]
\[w_{AB} = -8,94 \text{ mmol} \cdot 8,314 \text{ J mol}^{-1} \cdot \text{K}^{-1} \cdot \left(2000 \text{ K} + 273 \text{ K}\right) \cdot \ln \left(\frac{125 \text{ mL}}{22,5 \text{ mL}}\right) = 289708 \cdot 10^{-3} \text{ J} = -289 \text{ J} \]
\[w_{CD} = -8,94 \text{ mmol} \cdot 8,314 \text{ J mol}^{-1} \cdot \text{K}^{-1} \cdot \left(400 \text{ K} + 273 \text{ K}\right) \cdot \ln \left(\frac{27,8 \text{ mL}}{500 \text{ mL}}\right) = 145 \text{ J} \]
\[w_{\text{Prozess}} = -289 J + 145 J = -144 J \]

f) \[\varepsilon = 1 - \frac{T_1}{T_2} = 1 - \frac{400 \text{ K} + 273 \text{ K}}{2000 \text{ K} + 273 \text{ K}} = 70 \% = 0,70 \]

g) \[\varepsilon = 1 - \frac{T_1}{T_2} = 1 - \frac{800 \text{ K} + 273 \text{ K}}{2000 \text{ K} + 273 \text{ K}} = 53 \% = 0,53 < 0,70 \text{ (Dieselmotor)} \]

Die Effizienz ist beim Benzinmotor kleiner als beim Dieselmotor.

h) Die Kraftstoffe verbrennen (trotz Luftüberschuss) nicht vollständig und es bildet sich Ruß (Kohlenstoff).

i)

\[O \]
\[H_2N \quad \text{NH}_2 \]

j) \[2 \text{CH}_4 \text{ON}_2 + 6 \text{NO} \rightarrow 5 \text{N}_2 + 2 \text{CO}_2 + 4 \text{H}_2\text{O} \]